
Introduction to OpenCL

Cliff Woolley, NVIDIA

Developer Technology Group

Welcome to the OpenCL Tutorial!

 OpenCL Platform Model

 OpenCL Execution Model

 Mapping the Execution Model onto the Platform Model

 Introduction to OpenCL Programming

 Additional Information and Resources

OpenCL is a trademark of Apple, Inc.

© Copyright Khronos Group, 2010

Design Goals of OpenCL

 Use all computational resources in the system

— CPUs, GPUs and other processors as peers

 Efficient parallel programming model

— Based on C99

— Data- and task- parallel computational model

— Abstract the specifics of underlying hardware

— Specify accuracy of floating-point computations

 Desktop and Handheld Profiles

OPENCL PLATFORM MODEL

© Copyright Khronos Group, 2010

It’s a Heterogeneous World

 A modern platform includes:

– One or more CPUs

– One or more GPUs

– Optional accelerators (e.g., DSPs)

GMCH = graphics memory control hub

ICH = Input/output control hub

GMCHGPU

ICH

CPU

DRAM

CPU

OpenCL Platform Model

Host

Compute Unit
Compute Device

…
…

…
…

…
……
…

……
…

…

Processing

Element

Computational Resources

OpenCL Platform Model

Host

Compute Unit
Compute Device

…
…

…
…

…
……
…

……
…

…

Processing

Element

Computational Resources

OpenCL Platform Model
on CUDA Compute Architecture

Host

Compute Unit
Compute Device

…
…

…
…

…
……
…

……
…

…

Processing

Element

CPU

CUDA-Enabled

GPU

CUDA

Streaming

Multiprocessor

CUDA

Streaming

Processor

Anatomy of an OpenCL Application

Compute

Devices

OpenCL Application

Host Code

• Written in C/C++

• Executes on the host

Device Code

• Written in OpenCL C

• Executes on the device

Host

…
…

…
…

…
……
…

……
…

…

Host code sends commands to the Devices:
… to transfer data between host memory and device memories

… to execute device code

Anatomy of an OpenCL Application
 Serial code executes in a Host (CPU) thread

 Parallel code executes in many Device (GPU) threads

across multiple processing elements

OpenCL Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

OPENCL EXECUTION MODEL

© Copyright Khronos Group, 2010

Decompose task into work-items

 Define N-dimensional computation domain

 Execute a kernel at each point in computation domain

void

trad_mul(int n,

const float *a,

const float *b,

float *c)

{

int i;

for (i=0; i<n; i++)

c[i] = a[i] * b[i];

}

Traditional loop as a
function in C

__kernel void

dp_mul(__global const float *a,

__global const float *b,

__global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

} // execute over n “work items”

OpenCL C kernel

© Copyright Khronos Group, 2010

An N-dimension domain of work-items

Define the ―best‖ N-dimensioned

index space for your algorithm

• Kernels are executed across a

global domain of work-items

• Work-items are grouped into local

work-groups

– Global Dimensions: 1024 x 1024

(whole problem space)

– Local Dimensions: 32 x 32

(work-group … executes together)

1024

1
0
2
4

© Copyright Khronos Group, 2010

OpenCL Execution Model

The application runs on a Host which submits work to the Devices

 Work-item: the basic unit of work on an OpenCL device

 Kernel: the code for a work-item (basically a C function)

 Program: Collection of kernels and other functions (analogous to a dynamic

library)

© Copyright Khronos Group, 2010

OpenCL Execution Model

• Context: The environment within which work-

items execute; includes devices and their

memories and command queues

• Command Queue: A queue used by the Host

application to submit work to a Device (e.g.,

kernel execution instances)

– Work is queued in-order, one queue per device

– Work can be executed in-order or out-of-order

Context

Device Device

The application runs on a Host which submits work to the Devices

Queue Queue

MAPPING THE EXECUTION MODEL

ONTO THE PLATFORM MODEL

Kernel Execution on Platform Model

• Each kernel is executed on a

compute device

…
…

…

Compute device

(CUDA-enabled GPU)

Work-Item

(CUDA thread) • Each work-item is executed

by a compute element

Compute element

(CUDA core)

Work-Group

(CUDA thread block)

• Each work-group is executed

on a compute unit

• Several concurrent work-

groups can reside on one

compute unit depending on

work-group’s memory

requirements and compute

unit’s memory resources

…

Compute unit

(CUDA Streaming

Multiprocessor)

Kernel execution instance

(CUDA kernel grid)

...

© Copyright Khronos Group, 2010

OpenCL Memory Model

• Private Memory

–Per work-item

• Local Memory

–Shared within a workgroup

• Global/Constant Memory

–Visible to all workgroups

• Host Memory

–On the CPU

Memory management is Explicit
You must move data from host -> global -> local … and back

Workgroup

Work-Item

Compute Device

Work-Item

Workgroup

Host

Private
Memory

Private
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

Work-ItemWork-Item

Private
Memory

Private
Memory

INTRODUCTION TO

OPENCL PROGRAMMING

OpenCL Framework

 Platform layer

— Platform query and context creation

 Compiler for OpenCL C

 Runtime

— Memory management and command execution within a context

© Copyright Khronos Group, 2010

Programs Kernels

OpenCL Framework

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Framework:
Platform Layer

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

OpenCL Framework:
Platform Layer

 Query platform information

— clGetPlatformInfo(): profile, version, vendor, extensions

— clGetDeviceIDs(): list of devices

— clGetDeviceInfo(): type, capabilities

 Create an OpenCL context for one or more devices

Context =
cl_context

Command queues to send commands to these devices

One or more devices

Memory and device code shared by these devices

cl_device_id

cl_mem

cl_command_queue

cl_program

// Get the platform ID

cl_platform_id platform;

clGetPlatformIDs(1, &platform, NULL);

// Get the first GPU device associated with the platform

cl_device_id device;

clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

// Create an OpenCL context for the GPU device

cl_context context;

context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);

Platform Layer:
Context Creation (simplified)

Error

callback

User

data

Context

properties

Error

code

Number

returned

Platform Layer:
Error Handling, Resource Deallocation

 Error handling:

— All host functions return an error code

— Context error callback

 Resource deallocation

— Reference counting API: clRetain*(), clRelease*()

 Both are removed from code samples for clarity

— Please see SDK samples for complete code

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Framework:
OpenCL C

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

© Copyright Khronos Group, 2010

OpenCL C

 Derived from ISO C99 (with some restrictions)

 Language Features Added

— Work-items and work-groups

— Vector types

— Synchronization

— Address space qualifiers

 Also includes a large set of built-in functions

— Image manipulation

— Work-item manipulation

— Math functions

OpenCL C Language Restrictions

 Pointers to functions are not allowed

 Pointers to pointers allowed within a kernel, but not as an argument

 Bit-fields are not supported

 Variable-length arrays and structures are not supported

 Recursion is not supported

 Writes to a pointer to a type less than 32 bits are not supported*

 Double types are not supported, but reserved

 3D Image writes are not supported

Some restrictions are addressed through extensions

 Extensions are optional features exposed through OpenCL

 The OpenCL working group has already approved many

extensions to the OpenCL specification:

— Double precision floating-point types (Section 9.3)

— Built-in functions to support doubles

— Atomic functions (Section 9.5, 9.6, 9.7)

— Byte-addressable stores (write to pointers to types < 32-bits) (Section 9.9)

— 3D Image writes (Section 9.8)

— Built-in functions to support half types (Section 9.10)

Now core features

in OpenCL 1.1

OpenCL C Optional Extensions

© Copyright Khronos Group, 2010

Work-items and work-groups

 A kernel is a function executed for each work-item

__kernel void square(__global float* input, __global float* output)

{

int i = get_global_id(0);

output[i] = input[i] * input[i];

}

input 6 1 1 0 9 2 4 1 1 9 7 6 8 2 2 5

36 1 1 0 81 4 16 1 1 81 49 36 64 4 4 25output

get_global_id(0) = 7

Address space

qualifier

Function

qualifier

Built-in

function

1

1

0 1 2 3 4 5 6 8 9 10 11 12 13 14 157

© Copyright Khronos Group, 2010

Work-items and work-groups

6 1 1 0 9 2 4 1 1 9 7 6 8 2 2 5input

get_work_dim() = 1

get_global_size(0) = 16

get_num_groups(0) = 2

work-group

get_local_id(0) = 3

get_global_id(0) = 11

get_group_id(0) = 1

get_local_size(0) = 8

get_group_id(0) = 0

get_local_size(0) = 8

work-item

© Copyright Khronos Group, 2010

OpenCL C Data Types

 Scalar data types

— char, uchar, short, ushort, int, uint, long, ulong, float

— bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void, half (storage)

 Image types

— image2d_t, image3d_t, sampler_t

 Vector data types

— Vector lengths 2, 3, 4, 8, 16 (char2, ushort4, int8, float16, double2, …)

— Endian safe

— Aligned at vector length

— Vector operations

double is an optional
type in OpenCL

3-vectors new
in OpenCL 1.1

OpenCL C Synchronization Primitives

 Built-in functions to order memory operations and synchronize

execution:

— mem_fence(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)

 waits until all reads/writes to local and/or global memory made by the calling work-

item prior to mem_fence() are visible to all threads in the work-group

— barrier(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)

 waits until all work-items in the work-group have reached this point and calls

mem_fence(CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE)

 Used to coordinate accesses to local or global memory shared

among work-items

OpenCL C Kernel Example

__kernel void dp_mul(__global const float *a,

__global const float *b,

__global float *c,

int N)

{

int id = get_global_id (0);

if (id < N)

c[id] = a[id] * b[id];

}

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Framework:
Runtime

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

OpenCL Framework:
Runtime

 Command queues creation and management

 Device memory allocation and management

 Device code compilation and execution

 Event creation and management (synchronization, profiling)

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Runtime:
Kernel Compilation

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

Kernel Compilation

 A cl_program object encapsulates some source code (with potentially

several kernel functions) and its last successful build

— clCreateProgramWithSource() // Create program from source

— clBuildProgram() // Compile program

 A cl_kernel object encapsulates the values of the kernel’s

arguments used when the kernel is executed

— clCreateKernel() // Create kernel from successfully compiled program

— clSetKernelArg() // Set values of kernel’s arguments

Kernel Compilation

// Build program object and set up kernel arguments

const char* source = "__kernel void dp_mul(__global const float *a, \n"

" __global const float *b, \n"

" __global float *c, \n"

" int N) \n"

"{ \n"

" int id = get_global_id (0); \n"

" if (id < N) \n"

" c[id] = a[id] * b[id]; \n"

"} \n";

cl_program program = clCreateProgramWithSource(context, 1, &source, NULL, NULL);

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, ―dp_mul", NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&d_buffer);

clSetKernelArg(kernel, 1, sizeof(int), (void*)&N);

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Runtime:
Memory Objects

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

Memory Objects

 Two types of memory objects (cl_mem):

— Buffer objects

— Image objects

 Memory objects can be copied to host memory, from host

memory, or to other memory objects

 Regions of a memory object can be accessed from host by

mapping them into the host address space

Buffer Object

 One-dimensional array

 Elements are scalars, vectors, or any user-defined structures

 Accessed within device code through pointers

Image Object

 Two- or three-dimensional array

 Elements are 4-component vectors from a list of predefined

formats

 Accessed within device code via built-in functions (storage

format not exposed to application)

— Sampler objects are used to configure how built-in functions sample

images (addressing modes, filtering modes)

 Can be created from OpenGL texture or renderbuffer

© Copyright Khronos Group, 2010

KernelsPrograms

OpenCL Runtime:
Command Queues

Third party names are the property of their owners.

Context

__kernel void

dp_mul(global const float *a,
global const float *b,

global float *c)
{

int id = get_global_id(0);

c[id] = a[id] * b[id];
}

dp_mul

CPU program binary

dp_mul

GPU program binary

Images Buffers
In

Order

Queue

Out of

Order

Queue

GPU

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

arg[0] value

arg[1] value

arg[2] value

dp_mul

Memory Objects Command Queues

Commands

 Memory copy or mapping

 Device code execution

 Synchronization point

Command Queue

 Sequence of commands scheduled for execution on a specific device

— Enqueuing functions: clEnqueue*()

— Multiple queues can execute on the same device

 Two modes of execution:

— In-order: Each command in the queue executes only when the preceding

command has completed (including memory writes)

— Out-of-order: No guaranteed order of completion for commands

// Create a command-queue for a specific device

cl_command_queue cmd_queue = clCreateCommandQueue(context, device_id, 0, NULL);

Properties

Error

code

Data Transfer between Host and Device

// Create buffers on host and device

size_t size = 100000 * sizeof(int);

int* h_buffer = (int*)malloc(size);

cl_mem d_buffer = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, NULL);

…

// Write to buffer object from host memory

clEnqueueWriteBuffer(cmd_queue, d_buffer, CL_FALSE, 0, size, h_buffer, 0, NULL, NULL);

…

// Read from buffer object to host memory

clEnqueueReadBuffer(cmd_queue, d_buffer, CL_TRUE, 0, size, h_buffer, 0, NULL, NULL);

Blocking? Offset Event synch

Kernel Execution:
NDRange

 Host code invokes a kernel over an index space called an NDRange

— NDRange = ―N-Dimensional Range‖ of work-items

— NDRange can be a 1-, 2-, or 3-dimensional space

— Work-group dimensionality matches work-item dimensionality

Kernel Invocation

// Set number of work-items in a work-group

size_t localWorkSize = 256;

int numWorkGroups = (N + localWorkSize – 1) / localWorkSize; // round up

size_t globalWorkSize = numWorkGroups * localWorkSize; // must be evenly divisible by localWorkSize

clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, &globalWorkSize, &localWorkSize, 0, NULL, NULL);

NDRange

Command Synchronization

 Queue barrier command: clEnqueueBarrier()

— Commands after the barrier start executing only after all commands before

the barrier have completed

 Events: a cl_event object can be associated with each command

— Commands return events and obey event waitlists

 clEnqueue*(…, num_events_in_waitlist, *event_waitlist, *event);

— Any commands (or clWaitForEvents()) can wait on events before executing

— Event object can be queried to track execution status of associated

command and get profiling information

 Some clEnqueue*() calls can be optionally blocking

— clEnqueueReadBuffer(…, CL_TRUE, …);

© Copyright Khronos Group, 2010

Synchronization: Queues & Events

 You must explicitly synchronize between queues

— Multiple devices each have their own queue

— Possibly multiple queues per device

— Use events to synchronize

ADDITIONAL INFORMATION

AND RESOURCES

Next Steps

 Begin hands-on development with our publicly available

OpenCL driver and GPU Computing SDK

 Read the OpenCL Specification and the extensive documentation

provided with the SDK

 Read and contribute to OpenCL forums at Khronos and NVIDIA

NVIDIA OpenCL Resources

 NVIDIA OpenCL Web Page:

— http://www.nvidia.com/object/cuda_opencl.html

 NVIDIA OpenCL Forum:

— http://forums.nvidia.com/index.php?showforum=134

 NVIDIA driver, profiler, code samples for Windows and Linux:

— http://developer.nvidia.com/object/opencl.html

http://www.nvidia.com/object/cuda_opencl.html
http://forums.nvidia.com/index.php?showforum=134
http://developer.nvidia.com/object/opencl.html

© Copyright Khronos Group, 2010

Khronos OpenCL Resources

 OpenCL Specification

— http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

 OpenCL Registry

— http://www.khronos.org/registry/cl/

 OpenCL Developer Forums

— http://www.khronos.org/message_boards/

 OpenCL Quick Reference Card

— http://www.khronos.org/files/opencl-1-1-quick-reference-card.pdf

 OpenCL Online Man pages

— http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/
http://www.khronos.org/message_boards/

OpenCL Books

• The OpenCL Programming Book

– Available now: search for OpenCL on

Amazon

• OpenCL Programming Guide -

The ―Red Book‖ of OpenCL

– Coming in July 2011; rough cut

available on Safaribooks

– http://my.safaribooksonline.com/9780132488006

Questions?

