Processes, Threads, SMP,
and Microkernels

Slides are mainly taken from «Operating Systems: Internals and
Design Principles”, 6/E Willlam Stallings (Chapter 4). Some

materials and figures are obtained from the POSIX threads
Programming tutorial at

https://computing.linl.gov/tutorials/pthreads

Sistemi di Calcolo (Il semestre) — Roberto Baldoni

,\iﬁ) \ Roadmap

* Processes: fork (), walit()

* Threads: Resource ownership and
execution

« Symmetric multiprocessing (SMP)
 Microkernel
 Case Studies of threads:

— PThreads

3
5
Q%@ Process Elements

* A process Is comprised of:
— Program code (possibly shared)
— A set of data

— A number of attributes describing the state of
the process

=y

4
%xﬁ Process Elements

* While the process Is running it has a
number of elements including

— |ldentifier

— State

— Priority

— Program counter

— Memory pointers

— Context data

— |/O status information

— Accounting information

B
xﬁ) Process Control Block

» Contains the process e
elements Priorit
Program counter
* Created and managed —
by the operating system e
I/O status
* Allows support for lormaton
multiple processes itormation

=y

Figure 3.1 Simplified Process Control Block

Unix system calls
Creating new Processes

fork()
wait()
exit()

How To Create New Processes?

Underlying mechanism
A process runs fork to create a child process
Parent and children execute concurrently
Child process is a duplicate of the parent process

parent

l fork ()

child

Process Creation

After a fork, both parent and child keep running, and each can
fork off other processes.

A process tree results. The root of the tree is a special process
created by the OS during startup.

A process can choose to wait for & &
children to terminate. For

example, if C issued a wait() (j{(\y(\y (G)

system call, it would block until
G finished. & A forks B and C
Bforks D, E, and F
C forks G
(Q) D forks H

H forks T

Bootstrapping

When a computer is switched on or reset, there must be an
Initial program that gets the system running

This Is the bootstrap program
Initialize CPU registers, device controllers, memory
Load the OS into memory
Start the OS running

OS starts the first process (such as “init”)

OS waits for some event to occur
Hardware interrupts or software interrupts (traps)

Fork System Call

Current process split into 2 processes: parent, child

Returns -1 if unsuccessful fork()
Returns 0 in the child m
Stack Stack
Returns the child’s | |
Identifier in the parent
1} ret=0 1}
D at a D at a
Text | fret = xxx Text

10

Fork System Call

The child process inherits from parent
Identical copy of memory

CPU registers
all files that have been opened by the parent

Execution proceeds concurrently with the instruction following
the fork system call

The execution context (PCB) for the child process is a copy of the
parent’s context at the time of the call

11

How fork Works (1)

Resources

pid = 25
/
o Data
Text
Stack

PCB

= ret = fork(); —
switch(ret)
{
case -1:
perror(“fork”);
exit(1);
case 0: //1am the child
<code for child >
exit(0);
default: // | am parent ...
<code for parent >
wait(0);
}

UNIX

12

How fork Works (2)

pid = 25
/
_ Data
Text
Stack

PCB

Resources

pid = 26

ret = fork(); ret = 26
switch(ret)
{
case -1:
perror(“fork”);
exit(1);

case 0: //1am the child
<code for child >
exit(0);

default: // I am parent ...
<code for parent >
wait(0);

UNIX

ret = fork(); ret=0
switch(ret)
{
case -1:
perror(“fork”);
exit(1);
case 0: // 1 am the child
<code for child >
exit(0);
default: // 1 am parent ...
<code for parent >
wait(0);

13

How fork Works (3)

pid = 25
/
_ Data
Text
Stack

PCB

Resources

pid = 26

ret = fork(); ret = 26
switch(ret)
{
case -1:
perror(“fork”);
exit(1);

case 0: //1am the child
<code for child >
exit(0);

default: // I am parent ...
<code for parent >
wait(0);

UNIX

ret = fork(); ret=0
switch(ret)

{

case -1:
perror(“fork”);
exit(1);

case 0: // 1 am the child
<code for child >
exit(0);

default: // 1 am parent ...
<code for parent >
wait(0);

14

How fork Works (4)

pid = 25

/
- Data

Text

Stack
PCB

Resources

pid = 26

ret = fork(); ret = 26
switch(ret)
{
case -1:
perror(“fork”);
exit(1);

case 0: //1am the child
<code for child >
exit(0);
default: // | am parent ...
<code for parent >
——3 wait(0);
}

UNIX

ret = fork(); ret=0
switch(ret)

{

case -1:
perror(“fork”);
exit(1);

case 0: // 1 am the child
<code for child >
exit(0);

default: // 1 am parent ...
<code for parent >
wait(0);

15

How fork Works (5)

pid = 25
/
_ Data
Text
Stack

PCB

pid = 26

Resources

ret = fork(); ret = 26
switch(ret)
{
case -1:
perror(“fork”);
exit(1);

case 0: //1am the child
<code for child >
exit(0);
default: // | am parent ...
<code for parent >
——3 wait(0);
}

UNIX

ret = fork(); ret=0
switch(ret)

{

case -1:
perror(“fork”);
exit(1);

case 0: // 1 am the child
<code for child >

—» exit(0);

default: // 1 am parent ...
<code for parent >
wait(0);

16

How fork Works (6)

pid = 25

/
- Data

Text

Stack

Resources

Process Status

ret = fork(); ret =26
switch(ret)
{
case -1:
perror(“fork”);
exit(1);

case 0: //1am the child
<code for child >
exit(0);
default: // | am parent ...
<code for parent >
wait(0);
—P <..>

UNIX

17

Orderly Termination: exit()

To finish execution, a child may call exit(number)

This system call:
Saves result = argument of exit
Closes all open files, connections
Deallocates memory
Checks if parent is alive

If parent is alive, holds the result value until the parent requests it
(with wait); in this case, the child process does not really die, but
It enters a zombie/defunct state

If parent is not alive, the child terminates (dies)

18

Waiting for the Child to Finish

Parent may want to wait for children to finish
Example: a shell waiting for operations to complete

Waiting for any some child to terminate: wait()
Blocks until some child terminates
Returns the process ID of the child process
Or returns -1 if no children exist (i.e., already exited)

Waiting for a specific child to terminate: waitpid()
Blocks till a child with particular process ID terminates

#include <sys/types.h>
#include <sys/wait.h>

pid t wait(int *status);
pid t waitpid(pid t pid, int *status, int options);

19

,\iﬁ) \ Roadmap

* Processes: fork (), wait()

-2 * Threads: Resource ownership and
execution

« Symmetric multiprocessing (SMP).
 Microkernel
 Case Studies of threads:

— PThreads

B
S{j& Processes and Threads

* Processes have two characteristics:

— Resource ownership - process includes a
virtual address space to hold the process
Image

— Scheduling/execution - follows an execution

path that may be interleaved with other
processes

* These two characteristics are treated
iIndependently by the operating system E

j‘g,

B
S{j& Processes and Threads

* The unit of dispatching iIs referred to as a
thread or lightweight process

* The unit of resource ownership is referred
to as a process or task

j‘g,

,mQ\
\iﬁ) Multithreading
Q |

+ The ability of an 43¢

OS to support

multiple, S R
concurrent paths S5 INIEE:
of execution within I e
a single process. -

=y

@ﬁ”\ Single Thread
& Approaches
+ MS-DOS supports a

single user process ... FE..i T

1

- 1
1

1

u 1
1

1

1

1

multiple processes 1 multiple processes
one thread per process : multiple threads per process

 Some UNIX, support

n
I I I u Itl ple uS‘ er S:'lllstl‘lmlion[racp
Figure 4.1 Threads and Processes [AND!

processes but only
support one thread
per process

j‘g,

3
A . .
Qxﬁ Multithreading
» Java run-time s

L] L]
1111111 roCess 1 one process
e nVI rO n I I l e n I S a one thread 1 multiple thread s
__
1

1
L] L] 1
1

1

1

1

1

1

1

multiple processes 1 multiple processes
one thread per process : multiple threads per process

multiple threads

* Multiple processes —
and threads are found
In Windows, Solaris,
and many modern |
versions of UNIX

j‘g,

R \
xﬁl Processes

* Avirtual address space which holds the
process image

* Protected access to
— Processors,
— Other processes,
— Files,
— 1/O resources

=y

e | _
Sﬁ \One or More Threads In
W Process

« Each thread has
— An execution state (running, ready, etc.)
— Saved thread context when not running
— An execution stack

— Some per-thread static storage for local
variables

— Access to the memory and resources of its
process (all threads of a process share this)

®

%@ \ One view...

 One way to view a thread Is as an
Independent program counter operating
within a process.

=y

Threads vs. processes

Multithreaded

.

Figure 4.2 Single Threaded and Multithreaded Process Models

Single-Threaded

Process Model
Process
Control
Block
User
Address
Space

——————— e o — — —

data

Unix Process vs thread

User Address Space

routinel warl(}
varz ()

maini{)
routinel ()

User Address Space

routine2(} warl
war?
war3

Stack Pointer
Prgrm. Counter
Registers

routineZ ()

routinel{} warl

Stack Pointer
Prgrm. Counter
Registers

Thread 2
stack
Stack Pointer
Prgm. Counter
Registers
Thread 1
stack
text
data

mairn()
routinel ()
routineZ ()

Process ID
User ID
Group ID

R
%% Benefits of Threads

 Takes less time to create a new thread
than a process

 Less time to terminate a thread than a
process

» Switching between two threads takes less
time that switching processes

 Threads can communicate with each other
— without invoking the kernel E

j‘g,

%ﬁf Thread use in a

@ = Single-User System
* Foreground and background work
* Asynchronous processing

* Speed of execution
* Modular program structure

j‘g,

®

Threads

 Several actions that affect all of the
threads In a process

— The

level.

e Exam
— Sus

OS must manage these at the process

nles:

pending a process involves suspending all

threads of the process

— Termination of a process, terminates all |
threads within the process

j‘g,

§ﬁ v Activities similar
& to Processes

* Threads have execution states and may
synchronize with one another.

— Similar to processes

* We look at these two aspects of thread
functionality in turn.
— States
— Synchronisation

j‘g,

K "‘"Qi\
xﬁ Thread Execution States

« States associated with a change in thread
state
— Spawn (another thread)

— Block

« Issue: will blocking a thread block other, or all,
threads

— Unblock
— Finish (thread)

» Deallocate register context and stacks

Sﬁ Example:
@ = Remote Procedure Call

e Consider:

— A program that performs two remote
procedure calls (RPCs)

— to two different hosts
— to obtain a combined result.

j‘g,

% RPC
¥ Using Single Thread

Time >
RPC RPC
Request Request

(a) RPC Using Single Thread

=y

A RPC Using
@ | One Thread per Server

Thread A (Process 1)

Thread B (Process 1)

{b) RPC Using One Thread per Server (0n a uniprocessor)

EEAAR] Blocked, waiting for response to RPC
BN Blocked, waiting for processor, which is in nse by Thread B
[1 Running

\Eﬁ\ Multithreading
¥ on a Uniprocessor

Time »
o Request Time guantum
requesi complete EXires
Thread A (Process 1) :u' | ' |
v i\

Thread B (Process 1) | | I |

Thread C (Process 2) Time quantum ' ' |
expires Vad
Process
created

I Blocked 1 Ready [Running

Figure 4.4 Multithreading Example on a Uniprocessor \E

X

Adobe PageMaker

Figure 4.5 Thread Structure for Adobe PageMaker

@ﬁ"\ Categories of
@ = Thread Implementation
* User Level Thread (ULT)

* Kernel level Thread (KLT) also called:
— kernel-supported threads
— lightweight processes.

j‘g,

o
Qxﬁ) User-Level Threads

 All thread ¢4
management is done \ | /
by the application V7 el
 The kernel is not Barnd
aware of the Space
existence of threads @

=y

K ~® Relationships between ULT
~{ Thread and Process States

Colored state
is current state

Figure 4.7 Examples of the Relationships Between User-Level Thread States and Process States

B
xﬁ Kernel-Level Threads

 Kernel maintains context
Information for the
ver Process and the threads

Space
— No thread management

Kernel

A N done by application
&\ » Scheduling is done on a
thread basis
> « Windows is an example
() Pure kernelleve of this approach

P

e

Qﬁm Advantages of ULT

* Application specific thread scheduling
iIndependent of kernel

* Thread switch does not require kernel

privilege and no switch to kernel mode Is
necessary

 ULTs run on any OS. The implementation

Is done through a thread library at user
level

p -

5.
%TA Disadvantages of ULT

* Blocking systems calls executed by a
thread blocks all threads of the process

* Pure ULTs does not take full advantage of
multiprocessors/multicores architectures

j‘g,

B

Q%ﬁm Advantages of KLT

* The kernel can simultaneously schedule
multiple threads from the same process on
multiple processors.

* If one thread In a process Is blocked, the
kernel can schedule another thread of the
same pProcess.

« Kernel routines themselves can be
multithreaded.

j‘g,

-

5.
%TA Disadvantage of KLT

 The transfer of control from one thread to
another within the same process requires
a mode switch to the kernel

xﬁ Combined Approaches

* Thread creation done In S 5
the user space \ | / |
» Bulk of scheduling and Toreads | | e
synchronization of Kernel
threads by the D O @ Space
application
® ®

« Example Is Solaris

j‘g,

xﬁ Relationship Between
¥ Thread and Processes

Table 4.2

Relationship Between Threads and Processes

Threads:Processes

Description

Example Svstems

1:1

M:1

1:M

M:N

Each thread of executionis a
unique process with its own
address space and resources.

A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Combines attributes of M:1
and 1:M cases.

Traditional UNIX
implementations

Windows NT, Solaris, Linux,
0S/2,0S/390, MACH

Ra (Clouds), Emerald

TRIX

E\ﬁl \ Roadmap

* Processes: fork (), wait()

* Threads: Resource ownership and
execution

« Symmetric multiprocessing (SMP).

 Microkernel

 Case Studies of threads:
— PThreads

v
%xﬁ Traditional View

* Traditionally, the computer has been
viewed as a sequential machine.

— A processor executes instructions one at a
time in sequence

— Each instruction is a sequence of operations

* Two popular approaches to providing
parallelism

— Symmetric MultiProcessors (SMPs)

— Clusters (ch 16) E

//’

,rQ\
%Eﬁ) Categories of Computer Systems

. Single Instruction Single Data (SISD)

— Single processor executes a single instruction stream
to operate on data stored in a single memory

SISD Instraction Pool

Data Pool

//’

Q- Single Instruction Multiple Data (SIMD)

— Each instruction Is executed on a different set
of data by the different processors

R
§§) \Categories of Computer Systems

SIMD Instraction Pool

————[PU|

——[PU|

Data Pool

————|PU|

-

B
Sm Categories of Computer Systems

Q . Multiple Instruction Single Data (MISD) stream

— A sequence of data is transmitted to a set of processors,
each executing a different instruction sequence

MISD Instruction Pool

-[Pu| L=|PU|-

Data Pool

//’

,rQ\
%Eﬁ) Categories of Computer Systems

* Multiple Instruction Multiple Data (MIMD)

— A set of processors simultaneously execute different
Instruction sequences on different data sets

MIMD Instruction Pool
—|PU [+ “—|PU |+
—|PU [+ “—|PU |+

Data Pool

—[PUlH |PU|

—|pu|~ =|pu|- i
[

w4\ Parallel Processor
@ Architectures

Parallel Processor

/\

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream)
Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)
Master/Slave Symmetric Clusters
Multiprocessors
(SMP)

Figure 4.8 Parallel Processor Architectures

f@\ Typical
¥ Simmetric Multi Processing Organization

Processor Processor s & Processor

Lic L1 Cache L1 Cache

I LX Cache' | I.2 C'a:hl!' | I.2 C'a:hl!'

System Bus

o
Adapter

o
Adapter
‘gf —

Figure 4.9 Symmetric Multiprocessor Organization

@ﬁ“\ Multiprocessor OS
% ' Design Considerations

* The key design issues Include

— Simultaneous concurrent processes or
threads

— Scheduling

— Synchronization

— Memory Management

— Reliability and Fault Tolerance

j‘g,

E\ﬁl \ Roadmap

* Processes: fork (), wait()

* Threads: Resource ownership and
execution

« Symmetric multiprocessing (SMP).

 Microkernel
 Case Studies of threads:

— PThreads

%%@ Microkernel
A microkernel is a small OS core that

provides the foundation for modular
extensions.

* Big question is how small must a kernel be
to qualify as a microkernel

— Must drivers be in user space?

* In theory, this approach provides a high
degree of flexibility and modularity.

p -

\ Kernel Architecture

User 2 f d plv
e r i
Mode i v f o v
e 1] c t
n C e 1]
t e € 5 a
User P e aw] d 5 5 1
Mode r r|:]s|m
(1] 1 [=] e
EKernel c v 1Yl rlm
Mode [e i v | o
5 r [-] I
5 5 r|v¥
Kernel .
Mode 3 Miowkemd

HARDWARE

{a) Layered kernel {b) Microkernel

Figure 4.10 Kernel Architecture

%’\ Microkernel Design:
® ' Memory Management

* Low-level memory management - Mapping
each virtual page to a physical page frame

— Most memory management tasks occur in

user space

[App]icatiun ﬂ

pagt I rrrrr

[Pager ﬂ
F %

e

Address-space
function call

7

y

[LL

Microkernel

|

NINEN

Eg Figure 4.11 Page Fault Processing

Sﬁ Microkernel Design:
Interprocess Communication

« Communication between processes or
threads in a microkernel OS is via

mesSages.

* A message includes:

— A header that identifies the sending and
receiving process and

— A body that contains direct data, a pointer to
a block of data, or some control information

about the process. E

Sﬁ Microkernal Design:
“I/0 and interrupt management

« Within a microkernel it is possible to
handle hardware interrupts as messages
and to include |/O ports in address spaces.

— a particular user-level process is assigned to
the interrupt and the kernel maintains the

mapping.

j‘g,

@ﬁ’\ Benefits of a

@ Microkernel Organization

« Uniform interfaces on requests made by a
process.

« Extensibility

* Flexibility

» Portability

« Reliability

* Distributed System Support |
* Object Oriented Operating Systems E

P

E\ﬁl \ Roadmap

Processes: fork (), wait()

Threads: Resource ownership and
execution

Symmetric multiprocessing (SMP).

Microkernel

Case Studies of threads:
* PThreads

=y

5.
,,%TPOSIX Threads (PThreads)

* For UNIX systems, implementations of
threads that adhere to the IEEE POSIX

1003.1c standard are Pthreads.

* Pthreads are C language programming
types defined in the pthread.h
header/include file.

j‘g,

s> .
K \
- \ Why Use Pthreads
« The primary motivation behind Pthreads is
Improving program performance.
« Can be created with much less OS overhead.
* Needs fewer system resources to run.

* View comparison of forking processes to using a
pthreads create subroutine. Timings reflect
50,000 processes/thread creations.

-

j‘g,

B
Qxﬁ) Threads vs Forks

PLATFORM

fork()

pthread create()

REAL | USER | SYSTEM | REAL | USER | SYSTEM
AMD 2.4 GHz Opteron (8cpus/node) 41.07 | 60.08 9.01 0.66 0.19 0.43
IBM 1.9 GHz POWERS5 p5-575
(8cpus/node) 64.24 | 30.78 27.68 1.75 0.69 1.1
IBM 1.5 GHz POWERA4 (8cpus/node) 104.05 | 48.64 47.21 2.01 1 1.52
INTEL 2.4 GHz Xeon (2 cpus/node) 54.95 1.54 20.78 1.64 0.67
INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.54 1.07 22.22 2.03 1.26

R Designing Pthreads Programs
as parallel programming

» To take advantage of Pthreads, a program must be able to

be organized into discrete, independent tasks which can
execute concurrently

« For example, if routinel and routine2 can be interchanged,
Interleaved and/or overlapped in real time, they are
candidates for threading.

routinei routine? final routine

routine? routine final routine

r2 final routine

routine1 final routine

routine? J

e —

tFn e

R
Sm Designing Pthreads (cont)

« Common models for threaded programs:

— Manager/Worker: manager assigns work to
other threads, the workers. Manager handles
iInput and hands out the work to the other
tasks.

— Pipeline: task is broken into a series of
suboperations, each handled in series but
concurrently, by a different thread.

-

j‘g,

f‘*‘Q\ Shared Memory Model

\ « All threads have access to the same global, shared
- memory

« Threads also have their own private data

* Programmers are responsible for synchronizing access
(protecting) globally shared data.

private l— thread
thread

/ thread

private
private \

pri

Lt

thread

\

) « Thread-safeness: in a nutshell, refers an
Q application's ability to execute multiple threads
simultaneously without "clobbering" shared data
or creating "race" conditions

% Thread-safeness
B
\

« Example: an application creates several threads,
each of which makes a call to the same library
routine:

— This library routine accesses/modifies a global
structure or location in memory.

— As each thread calls this routine it is possible
that they may try to modify this global
structure/memory location at the same time.

— If the routine does not employ some sort of
, synchronizatio
j‘g corruption, then it is not thread-safe.

Thread-safeness

Main Program

memioc 0x4450A

X

\,

Thread-safeness

A A S A R A rE . AR RSEAd R T A AR RrE R T

Thread 1 Thread 2 Balance
Read balance: $1000 $1000
Read balance: $1000 %1000
Deposit $200 $1000
Deposit $200 $1000
Update balance $1000+%200 $1200
Update balance $1000+%200 $1200

Sy
o
8

Shared memory

%’\Pthread Management —
. Creating Threads

* The main() method comprises a single,
default thread.

» pthread create() creates a new thread and
makes It executable.

* The maximum number of threads that may
be created by a process is implementation

dependent.
* Once created, threads are peers, and may
create other threads. E

j‘g,

%’\Pthread Management —
="

Terminating Threads

. Several ways to terminate a thread.:

The thread is complete and returns

The pthread_exit() method is called
The pthread_cancel() method is invoked

The exit() method is called

* The pthread_exit() routine Is called after a
thread has completed its work and it no
longer Is required to exist.

j‘g,

,,.xﬁTerminating Threads (cont)

* If the main program finishes before the
thread(s) do, the other threads will
continue to execute If a pthread_exit()
method exists.

* The pthread exit() method does not close
files; any files opened inside the thread will

remain open, so cleanup must be kept In
mind. E

j‘g,

Pthread Example (1/2)
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
Int tid; tid = (int)threadid,
printf("Hello World! It's me, thread #%d!\n",
tid);
pthread exit(NULL);
}

Pthread Example (2/2)

Int main (int argc, char *argv(])
{ pthread_t threads[NUM_THREADS];
Int rc, t;
for(t=0; t<NUM_THREADS; t++)
{
printf("In main: creating thread %d\n", t);
rc = pthread_create(&threads]t], NULL, PrintHello, (void *)t);
If (rc)
{
printf("ERROR,; return code from pthread_create() is %d\n",rc);
exit(-1);
}
}
pthread_exit(NULL);

}

K "‘"Qi\
xﬁ; Pthread Example - Output

N main: creating thread O
N main: creating thread 1
Hello World! It's me, thread #0!
N main: creating thread 2
Hello World! It's me, thread #1!
Hello World! It's me, thread #2!
N main: creating thread 3
N main: creating thread 4
Hello World! It's me, thread #3!

—EI o World! It's me, thread #4!

Example: Multiple Threads

#include <stdio.h>
#include <pthread.h>
#define NUM THREADS 4

void *hello (void *arg) {
printf (*Hello Thread\n”) ;
}

main () {
pthread t tid[NUM THREADS] ;

for (int i = 0; 1 < NUM THREADS; i++)

pthread create (&tid[i], NULL, hello, NULL) ;

for (int i = 0; 1 < NUM THREADS; i++)

pthread join(tid[i], NULL);

Programming with POSIX* Threads

10

. Capyrighl €] 2006, [nl=] Carparalian. All ighls ese rvad.
[nl=] and Lh= [nl=] laga 4= bademaiks g iagisk=e=d bademaiks al [nl=]l Carparalan ar ils sulbs<iace=s o Lhe Unil=d Slales g alhe:

SJun

Limx, *JLher bands and namas =

Lh= prapaily al Lhei iaspeclaee awnes,

