
Processes, Threads, SMP,

and Microkernels

Slides are mainly taken from «Operating Systems: Internals and

Design Principles”, 6/E William Stallings (Chapter 4). Some

materials and figures are obtained from the POSIX threads

Programming tutorial at

 https://computing.llnl.gov/tutorials/pthreads

Sistemi di Calcolo (II semestre) – Roberto Baldoni

Roadmap

• Processes: fork (), wait()

• Threads: Resource ownership and

execution

• Symmetric multiprocessing (SMP)

• Microkernel

• Case Studies of threads:

– PThreads

Process Elements

• A process is comprised of:

– Program code (possibly shared)

– A set of data

– A number of attributes describing the state of
the process

Process Elements

• While the process is running it has a
number of elements including

– Identifier

– State

– Priority

– Program counter

– Memory pointers

– Context data

– I/O status information

– Accounting information

Process Control Block

• Contains the process

elements

• Created and managed

by the operating system

• Allows support for

multiple processes

6

Unix system calls

Creating new Processes

fork()

wait()

exit()

7

How To Create New Processes?

 Underlying mechanism

- A process runs fork to create a child process

- Parent and children execute concurrently

- Child process is a duplicate of the parent process

parent

child

fork()

8

 After a fork, both parent and child keep running, and each can

fork off other processes.

 A process tree results. The root of the tree is a special process

created by the OS during startup.

Process Creation

 A process can choose to wait for

children to terminate. For

example, if C issued a wait()

system call, it would block until

G finished.

9

Bootstrapping

 When a computer is switched on or reset, there must be an

initial program that gets the system running

 This is the bootstrap program

- Initialize CPU registers, device controllers, memory

- Load the OS into memory

- Start the OS running

 OS starts the first process (such as “init”)

 OS waits for some event to occur

- Hardware interrupts or software interrupts (traps)

10

Fork System Call

 Current process split into 2 processes: parent, child

Text

Data

Stack

Text

Data

Stack

ret = xxx

ret = 0

fork()
 Returns -1 if unsuccessful

 Returns 0 in the child

 Returns the child’s

identifier in the parent

11

Fork System Call

 The child process inherits from parent

- identical copy of memory

- CPU registers

- all files that have been opened by the parent

 Execution proceeds concurrently with the instruction following

the fork system call

 The execution context (PCB) for the child process is a copy of the

parent’s context at the time of the call

12

How fork Works (1)

Text
Stack

Data

File

Resources

pid = 25

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

PCB

UNIX

13

How fork Works (2)

Text

PCB

Stack

Data

File

Resources

pid = 25

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

UNIX

ret = 26

Text

PCB

Stack

Data

pid = 26

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

ret = 0

14

How fork Works (3)

Text

PCB

Stack

Data

File

Resources

pid = 25

Text

PCB

Stack

Data

pid = 26

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

UNIX

ret = 26 ret = 0

15

How fork Works (4)

Text

PCB

Stack

Data

File

Resources

pid = 25

Text

PCB

Stack

Data

pid = 26

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

UNIX

ret = 26 ret = 0

16

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

How fork Works (5)

Text

PCB

Stack

Data

File

Resources

pid = 25

Text

PCB

Stack

Data

pid = 26

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

}

UNIX

ret = 26 ret = 0

17

How fork Works (6)

Text

Process Status

Stack

Data

File

Resources

pid = 25

ret = fork();

switch(ret)

{

 case -1:

 perror(“fork”);

 exit(1);

 case 0: // I am the child

 <code for child >

 exit(0);

 default: // I am parent ...

 <code for parent >

 wait(0);

 < … >

ret = 26

UNIX

18

Orderly Termination: exit()

 To finish execution, a child may call exit(number)

 This system call:

- Saves result = argument of exit

- Closes all open files, connections

- Deallocates memory

- Checks if parent is alive

- If parent is alive, holds the result value until the parent requests it

(with wait); in this case, the child process does not really die, but

it enters a zombie/defunct state

- If parent is not alive, the child terminates (dies)

19

Waiting for the Child to Finish

 Parent may want to wait for children to finish

- Example: a shell waiting for operations to complete

 Waiting for any some child to terminate: wait()

- Blocks until some child terminates

- Returns the process ID of the child process

- Or returns -1 if no children exist (i.e., already exited)

 Waiting for a specific child to terminate: waitpid()

- Blocks till a child with particular process ID terminates

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

Roadmap

• Processes: fork (), wait()

• Threads: Resource ownership and

execution

• Symmetric multiprocessing (SMP).

• Microkernel

• Case Studies of threads:

– PThreads

Processes and Threads

• Processes have two characteristics:

– Resource ownership - process includes a

virtual address space to hold the process

image

– Scheduling/execution - follows an execution

path that may be interleaved with other

processes

• These two characteristics are treated

independently by the operating system

Processes and Threads

• The unit of dispatching is referred to as a

thread or lightweight process

• The unit of resource ownership is referred

to as a process or task

Multithreading

• The ability of an

OS to support

multiple,

concurrent paths

of execution within

a single process.

Single Thread

Approaches
• MS-DOS supports a

single user process

and a single thread.

• Some UNIX, support

multiple user

processes but only

support one thread

per process

Multithreading

• Java run-time

environment is a

single process with

multiple threads

• Multiple processes

and threads are found

in Windows, Solaris,

and many modern

versions of UNIX

Processes

• A virtual address space which holds the

process image

• Protected access to

– Processors,

– Other processes,

– Files,

– I/O resources

One or More Threads in

Process
• Each thread has

– An execution state (running, ready, etc.)

– Saved thread context when not running

– An execution stack

– Some per-thread static storage for local

variables

– Access to the memory and resources of its

process (all threads of a process share this)

One view…

• One way to view a thread is as an

independent program counter operating

within a process.

Threads vs. processes

Unix Process vs thread

Benefits of Threads

• Takes less time to create a new thread

than a process

• Less time to terminate a thread than a

process

• Switching between two threads takes less

time that switching processes

• Threads can communicate with each other

– without invoking the kernel

Thread use in a

Single-User System
• Foreground and background work

• Asynchronous processing

• Speed of execution

• Modular program structure

Threads

• Several actions that affect all of the

threads in a process

– The OS must manage these at the process

level.

• Examples:

– Suspending a process involves suspending all

threads of the process

– Termination of a process, terminates all

threads within the process

Activities similar

to Processes
• Threads have execution states and may

synchronize with one another.

– Similar to processes

• We look at these two aspects of thread

functionality in turn.

– States

– Synchronisation

Thread Execution States

• States associated with a change in thread

state

– Spawn (another thread)

– Block

• Issue: will blocking a thread block other, or all,

threads

– Unblock

– Finish (thread)

• Deallocate register context and stacks

Example:

Remote Procedure Call
• Consider:

– A program that performs two remote

procedure calls (RPCs)

– to two different hosts

– to obtain a combined result.

RPC

Using Single Thread

RPC Using

One Thread per Server

Multithreading

on a Uniprocessor

Adobe PageMaker

Categories of

Thread Implementation
• User Level Thread (ULT)

• Kernel level Thread (KLT) also called:

– kernel-supported threads

– lightweight processes.

User-Level Threads

• All thread

management is done

by the application

• The kernel is not

aware of the

existence of threads

Relationships between ULT

Thread and Process States

T2 does a blocking call

Kernel-Level Threads

• Kernel maintains context

information for the

process and the threads

– No thread management

done by application

• Scheduling is done on a

thread basis

• Windows is an example

of this approach

Advantages of ULT

• Application specific thread scheduling

independent of kernel

• Thread switch does not require kernel

privilege and no switch to kernel mode is

necessary

• ULTs run on any OS. The implementation

is done through a thread library at user

level

Disadvantages of ULT

• Blocking systems calls executed by a

thread blocks all threads of the process

• Pure ULTs does not take full advantage of

multiprocessors/multicores architectures

Advantages of KLT

• The kernel can simultaneously schedule

multiple threads from the same process on

multiple processors.

• If one thread in a process is blocked, the

kernel can schedule another thread of the

same process.

• Kernel routines themselves can be

multithreaded.

Disadvantage of KLT

• The transfer of control from one thread to

another within the same process requires

a mode switch to the kernel

Combined Approaches

• Thread creation done in

the user space

• Bulk of scheduling and

synchronization of

threads by the

application

• Example is Solaris

Relationship Between

Thread and Processes

Roadmap

• Processes: fork (), wait()

• Threads: Resource ownership and

execution

• Symmetric multiprocessing (SMP).

• Microkernel

• Case Studies of threads:

– PThreads

Traditional View

• Traditionally, the computer has been

viewed as a sequential machine.

– A processor executes instructions one at a

time in sequence

– Each instruction is a sequence of operations

• Two popular approaches to providing

parallelism

– Symmetric MultiProcessors (SMPs)

– Clusters (ch 16)

Categories of Computer Systems

• Single Instruction Single Data (SISD)

– Single processor executes a single instruction stream

to operate on data stored in a single memory

• Single Instruction Multiple Data (SIMD)

– Each instruction is executed on a different set

of data by the different processors

Categories of Computer Systems

• Multiple Instruction Single Data (MISD) stream

– A sequence of data is transmitted to a set of processors,

each executing a different instruction sequence

Categories of Computer Systems

• Multiple Instruction Multiple Data (MIMD)
– A set of processors simultaneously execute different

instruction sequences on different data sets

Categories of Computer Systems

Parallel Processor

Architectures

Typical

Simmetric Multi Processing Organization

Multiprocessor OS

Design Considerations
• The key design issues include

– Simultaneous concurrent processes or

threads

– Scheduling

– Synchronization

– Memory Management

– Reliability and Fault Tolerance

Roadmap

• Processes: fork (), wait()

• Threads: Resource ownership and

execution

• Symmetric multiprocessing (SMP).

• Microkernel

• Case Studies of threads:

– PThreads

Microkernel

• A microkernel is a small OS core that

provides the foundation for modular

extensions.

• Big question is how small must a kernel be

to qualify as a microkernel

– Must drivers be in user space?

• In theory, this approach provides a high

degree of flexibility and modularity.

Kernel Architecture

Microkernel Design:

Memory Management
• Low-level memory management - Mapping

each virtual page to a physical page frame

– Most memory management tasks occur in

user space

Microkernel Design:

Interprocess Communication
• Communication between processes or

threads in a microkernel OS is via

messages.

• A message includes:

– A header that identifies the sending and

receiving process and

– A body that contains direct data, a pointer to

a block of data, or some control information

about the process.

Microkernal Design:

I/O and interrupt management
• Within a microkernel it is possible to

handle hardware interrupts as messages

and to include I/O ports in address spaces.

– a particular user-level process is assigned to

the interrupt and the kernel maintains the

mapping.

Benefits of a

Microkernel Organization
• Uniform interfaces on requests made by a

process.

• Extensibility

• Flexibility

• Portability

• Reliability

• Distributed System Support

• Object Oriented Operating Systems

Roadmap

• Processes: fork (), wait()

• Threads: Resource ownership and

execution

• Symmetric multiprocessing (SMP).

• Microkernel

• Case Studies of threads:
• PThreads

POSIX Threads (PThreads)

• For UNIX systems, implementations of

threads that adhere to the IEEE POSIX

1003.1c standard are Pthreads.

• Pthreads are C language programming

types defined in the pthread.h

header/include file.

Why Use Pthreads

• The primary motivation behind Pthreads is

improving program performance.

• Can be created with much less OS overhead.

• Needs fewer system resources to run.

• View comparison of forking processes to using a

pthreads_create subroutine. Timings reflect

50,000 processes/thread creations.

PLATFORM fork() pthread_create()

REAL USER SYSTEM REAL USER SYSTEM

AMD 2.4 GHz Opteron (8cpus/node) 41.07 60.08 9.01 0.66 0.19 0.43

IBM 1.9 GHz POWER5 p5-575

(8cpus/node) 64.24 30.78 27.68 1.75 0.69 1.1

IBM 1.5 GHz POWER4 (8cpus/node) 104.05 48.64 47.21 2.01 1 1.52

INTEL 2.4 GHz Xeon (2 cpus/node) 54.95 1.54 20.78 1.64 0.67 0.9

INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.54 1.07 22.22 2.03 1.26 0.67

Threads vs Forks

Designing Pthreads Programs

as parallel programming

• To take advantage of Pthreads, a program must be able to

be organized into discrete, independent tasks which can

execute concurrently

• For example, if routine1 and routine2 can be interchanged,

interleaved and/or overlapped in real time, they are

candidates for threading.

Designing Pthreads (cont)

• Common models for threaded programs:

– Manager/Worker: manager assigns work to

other threads, the workers. Manager handles

input and hands out the work to the other

tasks.

– Pipeline: task is broken into a series of

suboperations, each handled in series but

concurrently, by a different thread.

Shared Memory Model

• All threads have access to the same global, shared

memory

• Threads also have their own private data

• Programmers are responsible for synchronizing access

(protecting) globally shared data.

Thread-safeness

• Thread-safeness: in a nutshell, refers an

application's ability to execute multiple threads

simultaneously without "clobbering" shared data

or creating "race" conditions

• Example: an application creates several threads,

each of which makes a call to the same library

routine:

– This library routine accesses/modifies a global

structure or location in memory.

– As each thread calls this routine it is possible

that they may try to modify this global

structure/memory location at the same time.

– If the routine does not employ some sort of

synchronization constructs to prevent data

corruption, then it is not thread-safe.

Thread-safeness

Thread-safeness

S
h
a
re

d
 m

e
m

o
ry

balance

deposit

……….

……….

……….

Pthread Management –

Creating Threads
• The main() method comprises a single,

default thread.

• pthread_create() creates a new thread and
makes it executable.

• The maximum number of threads that may
be created by a process is implementation
dependent.

• Once created, threads are peers, and may
create other threads.

Pthread Management –

Terminating Threads
• Several ways to terminate a thread:

– The thread is complete and returns

– The pthread_exit() method is called

– The pthread_cancel() method is invoked

– The exit() method is called

• The pthread_exit() routine is called after a
thread has completed its work and it no
longer is required to exist.

Terminating Threads (cont)

• If the main program finishes before the

thread(s) do, the other threads will

continue to execute if a pthread_exit()

method exists.

• The pthread_exit() method does not close

files; any files opened inside the thread will

remain open, so cleanup must be kept in

mind.

Pthread Example (1/2)
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{

 int tid; tid = (int)threadid;

 printf("Hello World! It's me, thread #%d!\n",
tid);

 pthread_exit(NULL);

}

Pthread Example (2/2)

int main (int argc, char *argv[])

{ pthread_t threads[NUM_THREADS];

 int rc, t;

 for(t=0; t<NUM_THREADS; t++)

 {

 printf("In main: creating thread %d\n", t);

 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

 if (rc)

 {

 printf("ERROR; return code from pthread_create() is %d\n",rc);

 exit(-1);

 }

 }

 pthread_exit(NULL);

}

Pthread Example - Output

In main: creating thread 0

In main: creating thread 1

Hello World! It's me, thread #0!

In main: creating thread 2

Hello World! It's me, thread #1!

Hello World! It's me, thread #2!

In main: creating thread 3

In main: creating thread 4

Hello World! It's me, thread #3!

Hello World! It's me, thread #4!

