Logical Time in Distributed Systems

Sistemi di Calcolo (Il semestre) – Roberto Baldoni

Logical clock

- Physical clock synchronization algorithms try to coordinate distributed clocks to reach a common value
 - Based on the estimation of transmission times
 - It can be hard to find a good estimation.
 - In several applications it is not important when things happened but in which order they happened
- Reliable way of ordering events is required!

Notes:

- Two events occurred at some process p_i happened in the same order as p_i observes them
- 2. When p_i sends a message to p_j the *send* event happens before the *receive* event
- Lamport introduced the relation that captures the causal dependencies between events (causal order relation)
 - \square We denote with \rightarrow_i the ordering relation between events in a process p_i
 - We denote with → the happened-before relation between any pair of events

Happened-Before Relation: Definition

 Two events e and e' are related by happened-before relation (e → e') if:

$$- \exists p_i \mid e \rightarrow_i e'$$

Happened-Before Relation: Definition

- Two events e and e' are related by happened-before relation (e → e') if:
 - $\exists p_i \mid e \rightarrow_i e'$
 - − ∀ message m send(m) → receive(m)
 - send(m) is the event of sending a message m
 - receive(m) is the event of receipt of the same message m

Happened-Before Relation: Definition

- Two events e and e' are related by happened-before relation (e → e') if:
 - $\exists p_i \mid e \rightarrow_i e'$
 - − ∀ message m send(m) → receive(m)
 - send(m) is the event of sending a message m
 - receive(m) is the event of receipt of the same message m
 - \exists e, e', e" | (e → e") \land (e" → e') (happened-before relation is transitive)

Happened-Before Relation

 Using these three rules it is possible to define a causal-ordered sequence of events e₁, e₂, ..., e_n

Notes:

- The sequence e₁, e₂, ..., e_n may not be unique
- It may exists a pair of events <e₁,e₂> such that e₁ and e₂ are not in happened-before relation
- If e₁ and e₂ are not in happened-before relation then they are concurrent (e₁||e₂)
- For any two events e₁ and e₂ in a distributed system, either
 - $e_1 \rightarrow e_2$
 - $e_2 \rightarrow e_1$
 - e₁||e₂

happened-before: example

e^j_i is j-th event of process p_i

$$S_1 = \langle e_1^1, e_2^1, e_2^2, e_3^2, e_3^2, e_1^3, e_1^4, e_1^4, e_1^5, e_2^4 \rangle$$

 $S_2 = \langle e_3^1, e_1^2, e_1^3, e_1^4, e_2^5 \rangle$

Note: e_3^1 and e_2^1 are concurrent

Logical Clock

- The Logical Clock, introduced by Lamport, is a software counting register monotonically increasing its value
 - Logical clock is not related to physical clock
- Each process p_i employs its logical clock L_i to apply a *timestamp* to events
- L_i(e) is the "logical" timestamp assigned, using the logical clock, by a process p_i to event e

Property:

- If $e \rightarrow e'$ then L(e) < L(e')

Observation:

 The ordering relation obtained through logical timestamps is only a partial order. Consequently, timestamps could not be sufficient to relate two events

Scalar Logical Clock: an implementation

- Each process p_i initializes its logical clock L_i=0 (∀ i = 1....N)
- p_i increases L_i of 1 when it generates an event (either send or receive)
 - $L_i = L_i + 1$
- When p_i sends a message m
 - creates an event send(m)
 - increases L_i
 - timestamps m with $t = L_i$
- When p_i receives a message m with timestamp t
 - Updates its logical clock L_i = max(t, L_i)
 - Produces an event receive(m)
 - Increases L_i

Scalar Logical Clock: example

- e^j is j-th event of process pi
- L_i is the logical clock of p_i
- Note:
 - $e_1^1 \rightarrow e_1^2$ and timestamps reflect this property
 - $e_1^1 \parallel e_3^1$ and respective timestamps have the same value
 - $e_2^1 \parallel e_3^1$ but respective timestamps have different values

Limits of Scalar Logical Clock

- Scalar logical clock can guarantee the following property
 - IF $e \rightarrow e'$ then L(e) < L(e')
- But it is not possible to guarantee
 - IF L(e) < L(e') then $e \rightarrow e'$
- Consequently:
 - It is not possible to determine, by analysing only scalar clocks, if two events are concurrent or correlated by the happened-before relation
- Mattern [1989] and Fridge [1991] proposed an improved version of logical clock where events are time-stamped with local logical clock and node identifier
 - Vector Clock

Logical Time and Ricart-Agrawala Mutual Exclusion Algorithm

Logical clock in distributed algorithms

Scalar Clock can be used to solve Lamport's Mutual Exclusion problem in a distributed setting

Ricart-Agrawala's algorithm: implementation (see also lecture notes)

- Local variables
 - #replies (initially 0)
 - State ∈ {Requesting, CS, NCS} (initially NCS)
 - Q pending requests queue (initially empty)
 - Last_Req (initially MAX_INT)
 - Num (initially 0)
- Algorithm:

begin

- 1. State = Requesting
- 2. Num = Num + 1; Last_Req = num
- 3. \forall i = 1...N, send REQUEST to p_i
- 4. Wait until #replies == N 1
- 5. State = CS
- 6. CS
- 7. $\forall r \in Q$, send REPLY to r
- 8. Q = Ø; State = NCS; #replies = 0; Last_Req = MAX_INT

Upon receipt REQUEST(t) from p_j

- 1. Num = max(t, Num)
- 2. If State == CS or (State == Requesting and {Last_Req,i} < {t,j})
- 3. Then insert in Q{t, j}
- 4. Else send REPLY to p_i

Upon receipt of REPLY from p_i

1.#replies = #replies + 1

