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Logical clock

Physical clock synchronization algorithms try to
coordinate distributed clocks to reach a common value
— Based on the estimation of transmission times

* |t can be hard to find a good estimation.

— In several applications it is not important when things
happened but in which order they happened

Reliable way of ordering events is required!



Notes:

1. Two events occurred at some process p; happened in the same
order as p;observes them

2. When p; sends a message to p, the send event happens before
the receive event

Lamport introduced the relation that captures the causal
dependencies between events (causal order relation)
[0 We denote with —;the ordering relation between events in a process p;

0 We denote with — the happened-before relation between any pair of
events



Happened-Before Relation: Definition

« Two events e and e’ are related by happened-before relation
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Happened-Before Relation

Using these three rules it is possible to define a causal-ordered
sequence of events e, e,, ..., e,

Notes:

The sequence ey, e, ..., e, may not be unique

It may exists a pair of events <e,,e,> such that e; and e, are
not in happened-before relation

If e, and e, are not in happened-before relation then they are
concurrent (e,||e,)

For any two events e; and e, in a distributed system, either
e > e
e, €

* ele,



happened-before: example

P1.

D, \ el is j-th event of
L \ a/Z / \6 process p,

Ps

S, =<el, ely, €%, e%, e, e3, e, e, et >

— 1 2 3 4 5
S,=<el; e, e, e, ey>

Note: el,andel, are concurrent
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Logical Clock

» The Logical Clock, introduced by Lamport, is a software counting register
monotonically increasing its value

— Logical clock is not related to physical clock
« Each process p; employs its logical clock L, to apply a timestamp to events

* Li(e) is the “logical” timestamp assigned, using the logical clock, by a
process p, to event e

* Property:
— Ife > e’then L(e) <L(e)
* Observation:

— The ordering relation obtained through logical timestamps is only a
partial order. Consequently, timestamps could not be sufficient to
relate two events



Scalar Logical Clock: an implementation

» Each process p; initializes its logical clock L=0 (Vi=1....N)

* p; Increases L; of 1 when it generates an event (either send or
receive)

- L=L+1
* When p; sends a message m
— creates an event send(m)
— Increases L,
— timestamps m with t = L,
* When p, receives a message m with timestamp t
— Updates its logical clock L; = max(t, L;)
— Produces an event receive(m)
— Increases L,



Scalar Logical Clock: example
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= el is j-th event of process pi
= L; is the logical clock of p;
= Note:
= el, - e?; and timestamps reflect this property
= el, || el; and respective timestamps have the same value

= el, || el; but respective timestamps have different values



Limits of Scalar Logical Clock

Scalar logical clock can guarantee the following property
— IFe —>e’'thenL(e) <L(e)

But it is not possible to guarantee
— IFL(e) <L(e’)thene —» ¢

Consequently:

— It is not possible to determine, by analysing only scalar clocks, if two
events are concurrent or correlated by the happened-before relation

Mattern [1989] and Fridge [1991] proposed an improved version of logical
clock where events are time-stamped with local logical clock and node
identifier

— Vector Clock



Logical Time and
Ricart-Agrawala Mutual Exclusion Algorithm



Logical clock in distributed algorithms

Scalar Clock can be used to solve
Lamport’'s Mutual Exclusion problem
In a distributed setting




Ricart-Agrawala’s algorithm:
Implementation (see also lecture notes)

« Local variables
— #replies (initially 0)
— State € {Requesting, CS, NCS} (initially NCS)
— Q pending requests queue (initially empty)
— Last_Req (initially MAX_INT)
— Num (initially 0)

« Algorithm:
begin Upon receipt REQUEST(t) from p;
1. State = Requesting 1. Num = max(t, Num)
2.Num = Num + 1; Last_ Req = num 2. If State == CS or (State == Requesting and {Last_Req,i} < {t,j})
3.Vi=1...N, send REQUEST to p, 3. Theninsert in Qft, j}
4. Wait until #replies == N - 1 4.Else send REPLY to p,
5. State = CS
6.CS
7.vreQ, send REPLY to r Upon receipt of REPLY from p;
5 Ea;t@§§éaieM_A§Cﬁ\if replies = 0; 1.#replies = #replies + 1




Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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request of P2




Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example

P1 receives the
request of P2
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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request of P1




Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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Ricart-Agrawala’s algorithm: example
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