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Logical clock 

• Physical clock synchronization algorithms try to 

coordinate distributed clocks to reach a common value 

– Based on the estimation of transmission times 

• It can be hard to find a good estimation. 

 

– In several applications it is not important when things 

happened but in which order they happened 

 

• Reliable way of ordering events is required! 



Notes: 

1. Two events occurred at some process pi happened in the same 

order as pi observes them 

2. When pi sends a message to pj the send event happens before 

the receive event 

 

 Lamport introduced the relation that captures the causal 

dependencies between events (causal order relation) 

 We denote with i the ordering relation between events in a process pi  

 We denote with  the happened-before relation between any pair of 

events 

 



Happened-Before Relation: Definition 

• Two events e and e’ are related by happened-before relation  
(e  e’) if: 

–  pi | e i e’  
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Happened-Before Relation: Definition 

• Two events e and e’ are related by happened-before relation  
(e  e’) if: 

–  pi | e i e’  

–  message m send(m)  receive(m) 

• send(m) is the event of sending a message m 

• receive(m) is the event of receipt of the same message m 

–  e, e’, e’’ | (e  e’’)  (e’’  e’)  
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Happened-Before Relation 

• Using these three rules it is possible to define a causal-ordered 
sequence of events e1, e2, … , en 

• Notes:  

– The sequence e1, e2, …, en may not be unique 

– It may exists a pair of events <e1,e2> such that e1 and e2 are 
not in happened-before relation 

– If e1 and e2 are not in happened-before relation then they are 
concurrent (e1||e2)  

– For any two events e1 and e2 in a distributed system, either  

• e1   e2 

• e2   e1 

• e1||e2 
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Logical Clock 

• The Logical Clock, introduced by Lamport, is a software counting register 

monotonically increasing its value 

– Logical clock is not related to physical clock 

• Each process pi employs its logical clock Li to apply a timestamp to events  

• Li(e) is the “logical” timestamp assigned, using the logical clock, by a 

process pi to event e 

• Property: 

– If e  e’ then L(e) < L(e’) 

• Observation: 

– The ordering relation obtained through logical timestamps is only a 

partial order. Consequently, timestamps could not be sufficient to 

relate two events 



Scalar Logical Clock: an implementation 

• Each process pi initializes its logical clock  Li=0 ( i = 1….N) 

• pi increases Li of 1 when it generates an event (either send or 

receive) 

– Li = Li + 1 

• When pi sends a message m 

– creates an event send(m) 

– increases Li 

– timestamps m with t = Li 

• When pi receives a message m with timestamp t 

– Updates its logical clock Li = max(t, Li) 

– Produces an event receive(m) 

– Increases Li 



Scalar Logical Clock: example 
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 ej
i is j-th event of process pi 

 Li is the logical clock of pi 
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Limits of Scalar Logical Clock 

• Scalar logical clock can guarantee the following property 

– IF e  e’ then L(e) < L(e’) 

• But it is not possible to guarantee 

– IF L(e) < L(e’) then e  e’ 

• Consequently: 

– It is not possible to determine, by analysing only scalar clocks, if two 

events are concurrent or correlated by the happened-before relation 

• Mattern [1989] and Fridge [1991] proposed an improved version of logical 

clock where events are time-stamped with local logical clock and node 

identifier  

– Vector Clock 



Logical Time and  

Ricart-Agrawala Mutual Exclusion Algorithm 



Logical clock in distributed algorithms 

Scalar Clock can be used to solve  

Lamport’s Mutual Exclusion problem 

in a distributed setting 



Ricart-Agrawala’s algorithm: 

implementation (see also lecture notes) 

• Local variables 

– #replies (initially 0) 

– State  {Requesting, CS, NCS} (initially NCS) 

– Q pending requests queue (initially empty) 

– Last_Req (initially MAX_INT) 

– Num (initially 0) 

• Algorithm: 

begin 
1. State = Requesting 

2. Num = Num + 1; Last_Req = num 

3.i = 1…N, send REQUEST to pi 

4. Wait until #replies == N - 1 

5. State = CS 

6. CS 

7.rQ, send REPLY to r 

8. Q = ; State = NCS; #replies = 0; 

Last_Req = MAX_INT 

Upon receipt REQUEST(t) from pj 

1. Num = max(t, Num) 

2. If State == CS or (State == Requesting and {Last_Req,i} < {t,j}) 

3. Then insert in Q{t, j} 

4. Else send REPLY to pj 

Upon receipt of REPLY from pj 

1.#replies = #replies + 1 
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