Logical Time in Distributed
Systems

Sistemi di Calcolo (Il semestre) — Roberto Baldoni

Logical clock

Physical clock synchronization algorithms try to
coordinate distributed clocks to reach a common value
— Based on the estimation of transmission times

* |t can be hard to find a good estimation.

— In several applications it is not important when things
happened but in which order they happened

Reliable way of ordering events is required!

Notes:

1. Two events occurred at some process p; happened in the same
order as p;observes them

2. When p; sends a message to p, the send event happens before
the receive event

Lamport introduced the relation that captures the causal
dependencies between events (causal order relation)
[0 We denote with —;the ordering relation between events in a process p;

0 We denote with — the happened-before relation between any pair of
events

Happened-Before Relation: Definition

« Two events e and e’ are related by happened-before relation

(e > e)if:
— 3pile—€
e e’
Pi - @ S

Happened-Before Relation: Definition

« Two events e and e’ are related by happened-before relation
(e > e)if:
— 3pile—€
— V message m send(m) — receive(m)

« send(m) is the event of sending a message m
* receive(m) is the event of receipt of the same message m

e

Pi >
m
e,
P >

Happened-Before Relation: Definition

« Two events e and e’ are related by happened-before relation
(e > e)if:
— 3pile—€
— V message m send(m) — receive(m)

« send(m) is the event of sending a message m
* receive(m) is the event of receipt of the same message m

— Jde,e,e’|(e—>e’)A(e’" > ¢e)
(happened-before relation is transitive)

Pi >
m
e’ e’
P - >

Happened-Before Relation

Using these three rules it is possible to define a causal-ordered
sequence of events e, e,, ..., e,

Notes:

The sequence ey, e, ..., e, may not be unique

It may exists a pair of events <e,,e,> such that e; and e, are
not in happened-before relation

If e, and e, are not in happened-before relation then they are
concurrent (e,||e,)

For any two events e; and e, in a distributed system, either
e > e
e, €

* ele,

happened-before: example

P1.

D, \ el is j-th event of
L \ a/Z / \6 process p,

Ps

S, =<el, ely, €%, e%, e, e3, e, e, et >

— 1 2 3 4 5
S,=<el; e, e, e, ey>

Note: el,andel, are concurrent
3 2

Logical Clock

» The Logical Clock, introduced by Lamport, is a software counting register
monotonically increasing its value

— Logical clock is not related to physical clock
« Each process p; employs its logical clock L, to apply a timestamp to events

* Li(e) is the “logical” timestamp assigned, using the logical clock, by a
process p, to event e

* Property:
— Ife > e’then L(e) <L(e)
* Observation:

— The ordering relation obtained through logical timestamps is only a
partial order. Consequently, timestamps could not be sufficient to
relate two events

Scalar Logical Clock: an implementation

» Each process p; initializes its logical clock L=0 (Vi=1....N)

* p; Increases L; of 1 when it generates an event (either send or
receive)

- L=L+1
* When p; sends a message m
— creates an event send(m)
— Increases L,
— timestamps m with t = L,
* When p, receives a message m with timestamp t
— Updates its logical clock L; = max(t, L;)
— Produces an event receive(m)
— Increases L,

Scalar Logical Clock: example

L0 =6 Ly=7 L =8
P1

L,=0 \
P2

AT
pe 3 e4 653

= el is j-th event of process pi
= L; is the logical clock of p;
= Note:
= el, - e?; and timestamps reflect this property
= el, || el; and respective timestamps have the same value

= el, || el; but respective timestamps have different values

Limits of Scalar Logical Clock

Scalar logical clock can guarantee the following property
— IFe —>e’'thenL(e) <L(e)

But it is not possible to guarantee
— IFL(e) <L(e’)thene —» ¢

Consequently:

— It is not possible to determine, by analysing only scalar clocks, if two
events are concurrent or correlated by the happened-before relation

Mattern [1989] and Fridge [1991] proposed an improved version of logical
clock where events are time-stamped with local logical clock and node
identifier

— Vector Clock

Logical Time and
Ricart-Agrawala Mutual Exclusion Algorithm

Logical clock in distributed algorithms

Scalar Clock can be used to solve
Lamport’'s Mutual Exclusion problem
In a distributed setting

Ricart-Agrawala’s algorithm:
Implementation (see also lecture notes)

« Local variables
— #replies (initially 0)
— State € {Requesting, CS, NCS} (initially NCS)
— Q pending requests queue (initially empty)
— Last_Req (initially MAX_INT)
— Num (initially 0)

« Algorithm:
begin Upon receipt REQUEST(t) from p;
1. State = Requesting 1. Num = max(t, Num)
2.Num = Num + 1; Last_ Req = num 2. If State == CS or (State == Requesting and {Last_Req,i} < {t,j})
3.Vi=1...N, send REQUEST to p, 3. Theninsert in Qft, j}
4. Wait until #replies == N - 1 4.Else send REPLY to p,
5. State = CS
6.CS
7.vreQ, send REPLY to r Upon receipt of REPLY from p;
5 Ea;t@§§éaieM_A§Cﬁ\if replies = 0; 1.#replies = #replies + 1

Ricart-Agrawala’s algorithm: example

PlC>

ENmnzl
L
P2 ® @

P3

P2 requires the
CS

Ricart-Agrawala’s algorithm: example

P1 © -
P2 @
@

_ Num = max(t, Num) =
P3 receives the =max(1,0) =1
request of P2

Ricart-Agrawala’s algorithm: example

Also P1 tries to | Num =1
i, @ access_ the CS @ Last_Req=Num =1
oo = Nam 15
P2 @ @
P3 @

Num=1

Ricart-Agrawala’s algorithm: example

P1 receives the
request of P2

Num =1
Last Reg=Num =1 a
Pl @ @ /
Num = 1 1 '
Last Req = Num = 1
P2 @ @
P3 @

Num=1

Ricart-Agrawala’s algorithm: example

{Last_Req, i} <{t, j}?

Num =1 {1, 1} < {1, 2}? YES
Last Req=Num =1 Nt
i @ N 1 @
um = 1
Last Req = Num = 1
P2 @ @
P3 @

Num=1

Ricart-Agrawala’s algorithm: example

Num = max(t, Num) =

Num = 1 =max(1,1) =1

Last Reg=Num =1 /g
& (»)

P1
W

P2 ® @

P3 ®

Num=1

Ricart-Agrawala’s algorithm: example

Num =1
Last Req = Num =1 h :

fies @

Pl N)
um =
Last Req = Num = 1
PZC> <:>
Reply
P3 CD

Num =1 A Num = max(t, Num) =
| =max(1,1) =1

P3 receives the
request of P1

Ricart-Agrawala’s algorithm: example

Num =1
Last Req=1 h

e9 ®
P1 :
Num =1 i /
Last Req=1 {Last_Req, i} <{t, j}?
7 1 :
{1, 21 < {1, 7 NO
P2 @ @
Reply
P3 @

Num =1 Num=1

P2 receives the
request of P1

Ricart-Agrawala’s algorithm: example

Num =1
Last Req=1 h

Pl@ @

Num =1
Last Req =1 Reply

Reply

fie9

P3

Num = 1. Num = 1)

P2 receives the
request of P1

Ricart-Agrawala’s algorithm: example

Num =1
Last Req 1
Num =1
Last Req 1 i eply
#replles 1

k

Num = 1. Num = 1

P2 receives the
Reply sent by P3

Ricart-Agrawala’s algorithm: example

Num =1 _
Last Req 1 #replies = 1

Num =1
Last Req 1 Reply
#replies = 1

RV

Num =1 Num = 1):

P1 receives the
Reply sent by P2

Ricart-Agrawala’s algorithm: example

Num =1

L ast Req 1 #replies = 2

®c

Num =1
Last Req 1 Reply
#replies = 1

= v

Num = 1. Num = 1

P1 receives the
Reply sent from P3

Ricart-Agrawala’s algorithm: example

P1 #repllles =0 R
eply Rep| :
#replies —// PY\ " { sireplies = 2
5 #replies =0
- OIIEEN® epics - o,
Reply
P3 R

Num =1 i\\\

P2 receives the
second Reply and
accesses CS

