Logical Time in Distributed Systems Sistemi di Calcolo (Il semestre) – Roberto Baldoni ## Logical clock - Physical clock synchronization algorithms try to coordinate distributed clocks to reach a common value - Based on the estimation of transmission times - It can be hard to find a good estimation. - In several applications it is not important when things happened but in which order they happened - Reliable way of ordering events is required! #### **Notes:** - Two events occurred at some process p_i happened in the same order as p_i observes them - 2. When p_i sends a message to p_j the *send* event happens before the *receive* event - Lamport introduced the relation that captures the causal dependencies between events (causal order relation) - \square We denote with \rightarrow_i the ordering relation between events in a process p_i - We denote with → the happened-before relation between any pair of events ## Happened-Before Relation: Definition Two events e and e' are related by happened-before relation (e → e') if: $$- \exists p_i \mid e \rightarrow_i e'$$ ## Happened-Before Relation: Definition - Two events e and e' are related by happened-before relation (e → e') if: - $\exists p_i \mid e \rightarrow_i e'$ - − ∀ message m send(m) → receive(m) - send(m) is the event of sending a message m - receive(m) is the event of receipt of the same message m ## Happened-Before Relation: Definition - Two events e and e' are related by happened-before relation (e → e') if: - $\exists p_i \mid e \rightarrow_i e'$ - − ∀ message m send(m) → receive(m) - send(m) is the event of sending a message m - receive(m) is the event of receipt of the same message m - \exists e, e', e" | (e → e") \land (e" → e') (happened-before relation is transitive) ### Happened-Before Relation Using these three rules it is possible to define a causal-ordered sequence of events e₁, e₂, ..., e_n #### Notes: - The sequence e₁, e₂, ..., e_n may not be unique - It may exists a pair of events <e₁,e₂> such that e₁ and e₂ are not in happened-before relation - If e₁ and e₂ are not in happened-before relation then they are concurrent (e₁||e₂) - For any two events e₁ and e₂ in a distributed system, either - $e_1 \rightarrow e_2$ - $e_2 \rightarrow e_1$ - e₁||e₂ ## happened-before: example e^j_i is j-th event of process p_i $$S_1 = \langle e_1^1, e_2^1, e_2^2, e_3^2, e_3^2, e_1^3, e_1^4, e_1^4, e_1^5, e_2^4 \rangle$$ $S_2 = \langle e_3^1, e_1^2, e_1^3, e_1^4, e_2^5 \rangle$ Note: e_3^1 and e_2^1 are concurrent ## Logical Clock - The Logical Clock, introduced by Lamport, is a software counting register monotonically increasing its value - Logical clock is not related to physical clock - Each process p_i employs its logical clock L_i to apply a *timestamp* to events - L_i(e) is the "logical" timestamp assigned, using the logical clock, by a process p_i to event e #### Property: - If $e \rightarrow e'$ then L(e) < L(e') #### Observation: The ordering relation obtained through logical timestamps is only a partial order. Consequently, timestamps could not be sufficient to relate two events ## Scalar Logical Clock: an implementation - Each process p_i initializes its logical clock L_i=0 (∀ i = 1....N) - p_i increases L_i of 1 when it generates an event (either send or receive) - $L_i = L_i + 1$ - When p_i sends a message m - creates an event send(m) - increases L_i - timestamps m with $t = L_i$ - When p_i receives a message m with timestamp t - Updates its logical clock L_i = max(t, L_i) - Produces an event receive(m) - Increases L_i ## Scalar Logical Clock: example - e^j is j-th event of process pi - L_i is the logical clock of p_i - Note: - $e_1^1 \rightarrow e_1^2$ and timestamps reflect this property - $e_1^1 \parallel e_3^1$ and respective timestamps have the same value - $e_2^1 \parallel e_3^1$ but respective timestamps have different values ## Limits of Scalar Logical Clock - Scalar logical clock can guarantee the following property - IF $e \rightarrow e'$ then L(e) < L(e') - But it is not possible to guarantee - IF L(e) < L(e') then $e \rightarrow e'$ - Consequently: - It is not possible to determine, by analysing only scalar clocks, if two events are concurrent or correlated by the happened-before relation - Mattern [1989] and Fridge [1991] proposed an improved version of logical clock where events are time-stamped with local logical clock and node identifier - Vector Clock ## Logical Time and Ricart-Agrawala Mutual Exclusion Algorithm ## Logical clock in distributed algorithms Scalar Clock can be used to solve Lamport's Mutual Exclusion problem in a distributed setting ## Ricart-Agrawala's algorithm: implementation (see also lecture notes) - Local variables - #replies (initially 0) - State ∈ {Requesting, CS, NCS} (initially NCS) - Q pending requests queue (initially empty) - Last_Req (initially MAX_INT) - Num (initially 0) - Algorithm: #### begin - 1. State = Requesting - 2. Num = Num + 1; Last_Req = num - 3. \forall i = 1...N, send REQUEST to p_i - 4. Wait until #replies == N 1 - 5. State = CS - 6. CS - 7. $\forall r \in Q$, send REPLY to r - 8. Q = Ø; State = NCS; #replies = 0; Last_Req = MAX_INT #### Upon receipt REQUEST(t) from p_j - 1. Num = max(t, Num) - 2. If State == CS or (State == Requesting and {Last_Req,i} < {t,j}) - 3. Then insert in Q{t, j} - 4. Else send REPLY to p_i #### Upon receipt of REPLY from p_i 1.#replies = #replies + 1